

Theme Transformer

Symbolic Music Generation with Theme-Conditioned Transformer

IEEE Transactions on Multimedia

Yi-Jen Shih^{1,2}, Shih-Lun Wu^{1,2}, Frank Zalkow³, Meinard Müller³, Yi-Hsuan Yang²

¹National Taiwan University, Taiwan ²Academia Sinica, Taiwan ³International Audio Laboratories Erlangen, Germany

About me

- Ian Shih
- B.S. in Electrical Engineering at National Taiwan University
- Part-time Research Assistant at Music and Al Lab
- Love playing some improvisation on piano (SoundCloud)
- Research Interest:
 - Music Generation (Prof. Yi-Hsuan Yang)
 - Visual Grounded Speech Models (Prof. Hung-Yi Lee)
- Website: atosystem.github.io

Outline

- Overview
- Technical Background
- Results
- Conclusion & Contribution

Outline

- Overview
- Technical Background
- Results
- Conclusion & Contribution

Overview

Excerpt from Perfect – Ed Sheeran

Overview - Theme

- Themes
- Sequentia
- Motivic Development
- Music Expectancy

Theme is crucial in music composition

But how do recent model generate music?

Overview

Prompt Conditioned Music Generation

Overview

Prompt Conditioned Music Generation

How to teach models to compose music base on a given Theme?

Overview

Theme Conditioned Music Generation

Entire Song (Output)

Overview - Difficulties

- Definition of Musical Theme is quite *ambiguous*
- Lack of Dataset for Musical Theme Annotations
- Recent Music Generation Models have problems recognizing "Theme", not to mention variations and repetitions

Overview

Theme Retrieval

Dan-cing in the dark

Overview

Theme Conditioned Music Generation

Entire Song (Output)

Outline

- Overview
- Technical Background
 - Theme Retrieval
 - Theme based Music Generation
- Results
- Conclusion & Contribution

- Previous Works
 - String-based
 - Correlative matrix (Hsu et al., 2001)
 - Geometric-based
 - COSIATEC (Meredith et al., 2010)
 - RECURSIA-RRT (Meredith, 2019)
- Requires hyperparameters tuning and prone to noise in data

Encode Melody into Vector Space

Extract Theme

Music Segments

Density based clustering

Themes should be in the largest cluster

Adopt idea from SimCLR (Chen et al., 2020)

Adopt idea from SimCLR (Chen et al., 2020)

Contrastive loss

$$-\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\alpha)}{\sum_k \mathbf{1}_{[k \neq i]} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\alpha)}$$

- Apply DBSCAN to cluster music segments
 - $D(S_i, S_j) = \|\operatorname{Emb}(S_i) \operatorname{Emb}(S_j)\|_2$
- Regard the largest segment as "Theme"
- Results: (F1 retrieval with human annotators)

	, ,	Duration	CL w/o Pitch Shift Augmentation	CM	COSIATEC
Average F1	.378	.220	.336	.345	.297

Outline

- Overview
- Technical Background
 - Theme Retrieval
 - Theme based Music Generation
- Results
- Conclusion & Contribution

• Background – Representation REMI (Hung et al., 2018)

Background – Autoregressive Model

$$p(x_t|x_{\leq t})$$

- Recently works employ Transformer as main backbone
 - Music Transformer (Huang et al., 2018)
 - Pop Music Transformer (Hung and Yang, 2020)
 - Compound Words Transformer (Hsiao et al., 2021)
- Train by minimizing Negative log-likelihood
 - $-\sum_{t=1}^{T} \log p(x_t \,|\, x_{< t})$

Prompt-based Music Generation

Prompt Conditioned Music Generation

Problem for prompt-based method

Figure from Prof. Hung-yi Lee

 $v^1 = W^v a^1$

 $v^2 = W^v a^2$ $v^3 = W^v a^3$ $v^4 = W^v a^4$

The NLL loss

minimized

considering

"themes"

without

the

can be

- Propose Theme Transformer
- Gating Mechanism

$$\mathbf{h}_t^l = \begin{cases} m_t \, \mathbf{h}_t^{l,(\text{cross})} + (1 - m_t) \, \mathbf{h}_t^{l,(\text{self})} \,, & l > L/2 \\ m_t \, \mathbf{h}_t^{l,(\text{cross})} + \mathbf{h}_t^{l,(\text{self})} \,, & l \le L/2 \end{cases}$$

Theme Positional Encoding

$$p_i^{\text{self}} = i \quad p_i^{\text{cross}} = i - \max_{\left(m_k^{\text{d}} = 0\right) \land \left(0 \le k < i\right)} k$$

- 2 Memory Networks
 - Theme
 - Non-Theme

Outline

- Overview
- Technical Background
- Results
- Conclusion & Contribution

- Evaluation Metrics
 - Pitch Class Consistency
 - Overlapping Area of chroma histograms of two bars
 - Melody Inconsistency
 - The min distance of all the segments compared to the first one

$$D(S_1, S_*)$$
 $D(S_i, S_j) = \|\text{Emb}(S_i) - \text{Emb}(S_j)\|_2$

• Grooving consistency: coherence in rhythm

- Proposed Evaluation Metrics
 - Theme Inconsistency
 - the inconsistency between theme regions

$$\frac{2}{N(N-1)} \sum_{i,j} D(\Gamma_i, \Gamma_j)$$

- Theme Uncontrollability
 - the differences between theme regions and the given condition

$$\frac{1}{N} \sum_{i=1}^{N} D(c_{1:\tau}, \Gamma_i)$$

- Theme Gap
 - Gaps between Theme Regions

Objective Evaluation

	Pitch class	Melody	Grooving	Theme incon-	Theme uncon-	Theme gap
	consistency†	inconsistency↓	consistency [†]	sistency↓	trollability↓	(in # bars)
Baseline (prompt-based) [13], [17]	.59±.07	.33±.38	.84±.09	_	_	_
Seq2seq Transformer [13]	.61±.04	$.46 \pm .28$.90±.06	1.01 ± 0.05	1.10 ± 0.14	6.02 ± 1.91
Theme Transformer (proposed)	.61±.06	.13±.24	.92±.07	0.27 ± 0.26	$0.24{\pm}0.20$	9.48 ± 3.59
Original pieces	.65±.05	.09±.18	.74±.10	0.05 ± 0.05	0.04 ± 0.04	12.24 ± 11.32

• Subjective Evaluation (Total *50* participants)

		C ontrol	R epeat	T iming	${f V}$ ariation	S tructure	Q uality
	Baseline (prompt-based) [13], [17]	3.01±1.08	2.55±1.18	2.73 ± 1.06	2.65 ± 1.06	3.06 ± 0.94	3.19±0.98
User group 1	Seq2seq [13]	2.52 ± 1.10	2.12 ± 1.08	$2.27{\pm}1.08$	2.41 ± 1.18	3.10 ± 0.99	3.23 ± 0.92
(33 subjects)	Theme Transformer (proposed)	3.63±1.10	3.55 ± 1.22	$3.27{\pm}1.03$	3.03 ± 1.11	3.33 ± 0.99	3.38 ± 0.97
	Baseline (prompt-based) [13], [17]	2.90±1.09	2.39 ± 0.97	2.76±1.26	3.22 ± 1.24	2.78 ± 1.09	2.78±1.00
User group 2	Theme Transformer (proposed)	3.49±1.11	3.39 ± 1.12	$3.27{\pm}1.25$	3.25 ± 1.06	3.16 ± 1.00	3.16 ± 1.00
(17 subjects)	Original pieces	3.61±1.17	$3.37{\pm}1.14$	3.53 ± 1.11	3.29 ± 1.11	3.39 ± 0.97	3.41±1.11

Ablation Studies on Temperature and Sampling

	ϵ	t	Pitch class	Melody	Grooving	Theme incon-	Theme uncon-	Theme gap
			consistency↑	inconsistency↓	consistency [†]	sistency↓	trollability↓	(in # bars)
	0.13	1.2	.61±.06	.13±.24	.92±.07	0.27±0.26	$0.24{\pm}0.20$	9.48 ± 3.59
Theme Transformer	0.25	1.2	$.63 \pm .05$	$.23 \pm .20$.91±.08	0.42 ± 0.23	0.66 ± 0.42	8.41 ± 3.05
	0.13	1.8	$.62 \pm .07$	$.19 \pm .25$	$.92 \pm .06$	$0.40{\pm}0.28$	$0.38{\pm}0.26$	9.43 ± 3.56
Original pieces	0.13	_	.65±.05	.09±.18	.74±.10	$0.05{\pm}0.05$	0.04 ± 0.04	12.24 ± 11.32
	0.25	_	.65±.05	.09±.18	.74±.10	0.31 ± 0.27	0.57 ± 0.45	9.91 ± 9.29

Ablation Studies on Model Architecture

	sequence	#self-attn	SE	separate	Melody	Theme incon-	Theme uncon-	Theme gap
	length N	layers L	DL	PEs	inconsistency↓	sistency↓	trollability↓	(in # bars)
	512	6			.13±.24	.27±.26	0.24 ± 0.20	9.48±3.59
Theme Transformer	1,024	6		\checkmark	.07±.15	$.27 \pm .21$	0.26 ± 0.19	13.70 ± 8.34
	512	6		•	.19±.23	$.55 \pm .27$	1.07 ± 0.26	7.70 ± 3.68
Pagalina [12] [17]	512	6			.33±.38	_	_	_
Baseline [13], [17]	512	12			.33±.38	_	_	_
Original pieces					.09±.18	.05±.05	0.04 ± 0.04	12.24±11.32

Outline

- Overview
- Technical Background
- Results
- Contribution

Contributions

- Proposed an Unsupervised Method for Theme Retrieval
- The first work to introduce Theme-based Symbolic Music Generation
- Design Theme-based Evaluation Metrics
- Our method outperform previous music generation works

Thanks for listening

Ian Shih

Email: yjshih23@gmail.com

Website: atosystem.github.io

